
Monitoring fuel consumption on your vehicle in “Real-Time”

PREFACE

Today we are all feeling the constraints of high gas prices. Unless your vehicle
comes with an onboard monitor that displays fuel consumption then knowing
what your actual fuel consumption is can only be done if you calculate miles
driven by gallons burned. To do that you must keep track of your mileage and
gallons burned from one fill up until the next. I decided I wanted more so I
interface my 2000 Ford Expedition with a laptop to monitor my fuel consumption
rate (MPG) in “Real-Time”.

To create the real time Interface I needed:
1. OBDII Interface device
2. OBDII J1962 Connector Cable
3. A laptop running Win 98 or better
4. Microsoft Excel 2000 or better with the tool packs installed
5. Data Acquisition Software (DAS)

With the On Board Diagnostics Generation 2 (OBDII) that was made mandatory
on all Vehicles sold in the US in 1996 it is possible to create an interface between
the vehicles electronic control module (ECM) and a laptop to access this data.

WARNING
Driving while distracted can be extremely dangerous to
yourself and others. It is NOT RECOMMENDED using,
adjusting, changing or any other activity with a laptop
while driving. Check your local and in-route traffic
regulations regarding the use of a laptop/display device
while driving.

- 1 -

TABLE OF CONTENTS

SECTION PAGE
I Preface 1
II Descriptions 3
III Calculating Fuel Consumption from Mass Air Flow 4
IV Software Configuration

Windmill (DAS)
CnfIML 5
SetupIML 8
WmDDE 9

MS Excel 10
V Appendix

A – PARTS LIST & SCHEMATIC
B - OBD-II TESTING
C - OBD-II PID

12
18
19

- 2 -

OBDII Interface
Since I have a FORD I selected the ELM Electronics Chipset ELM320 which
uses a Pulse Width Modulation (PWM) protocol for Ford vehicles and is what my
design is built around (There are other device available for other vehicles which I
comment on later). With the J1962 connector plugged into the existing interface
port located under the steering wheel, a laptop and some special software I can
get real-time readings of the pressures, temperatures, vehicle speed, load and
many other readings supported. The device communicates with the ECM by
simple ASCII commands inputted from the software through the laptops COM
port.

Block Diagram

Data Acquisition Software
The OBDII interface only works if you actually type in a specific command
requesting data so I must use a terminal program like hypertext to get readings,
and they are only updated when I send in a command so this method is not
practical. I needed a software program that can automatically send the
appropriate commands to the OBDII device; interpret the response and make it
available through Dynamic Data Exchange (DDE). Searching around the internet
I found Windmill, a simple DAS program that uses the COM ports of any windows
based PC; it has logging capabilities and a DDE Server. This program is perfect
– it can request specific data through the OBDII interface and serve the data
readings onto Excel.

MS Excel
This spreadsheet program is perfect for manipulating the data coming into the
PC. The functionality of Excel allows you to exchange data with other devices
through DDE and then apply math functions to that data so it is understandable
and provides meaningful data to you.

- 3 -

OBDII
Interface
Device

(Elmscan)

PC
Com Port

Vehicle
Interface

Port

http://www.windmill.co.uk/

Computing the Fuel Consumption of your Vehicle
This is a fairly straightforward approach. Most vehicles do not have a fuel flow
sensor, therefore; you need to use the Mass Air Flow (MAF) sensor and the
Vehicle Speed Sensor (VSS) to calculate miles per gallon (MPG).

1. Mass Air Flow - The mass of Air in grams per second consumed.
2. Vehicle Speed Sensor - The actual speed of the vehicle.

For today’s vehicles and by EPA regulations vehicles use the oxygen sensors to
feedback data to the ECM and control the air to fuel
ratio. This ratio is set at the chemically ideal value
of 14.7 grams of air to every gram of gasoline.
Since we now have a quantitative value we can use
other known values to convert the MAF to Gallons
of gas per hour (GPH) and then calculate miles per gallon (MPG).

Here are the steps to make the conversion:
1. Divide the MAF by 14.7 to get grams of gas per second
2. Divide result by 454 to get Lbs gas per second
3. Divide result by 6.701 Gals gas per second
4. Multiply result by 3600 to get gallons per hour

The math expression for GPH is: MAF * 0.0805

The value for vehicle speed is delivered in Km/Hr, to convert to miles multiply by
0.621317. To calculate MPG divide the MPH by GPH. The final math expression
for MPG will be:

VSS * 7.718
MAF

- 4 -

Conversion Table
454 grams 1 LB
6.701 Lbs Gas 1 Gal
3600 sec 1 Hour
0.621317 Mile 1 Km

Configuring the DAS software
Now that we know how to calculate MPG we need to configure the Windmill
software to request the data. The data from the ElmScan is returned in HEX
format and will need to be converted. MS Excel can do this with the HEX2DEC
command and we will address it in that section. First thing installing the software
by following the install steps from the developer.

Once installed there are several programs associated with Windmill, the three
programs we need to be concerned with are Confiml, Setupiml, and Wmdde that
I will describe here.

Confiml: This software performs the work of sending the requests to the
ElmScan through the identified COM port, interprets the results and forwards the
data to the other Windmill programs.

To configure (see fig below):
Configure IML Hardware:

1. Open Confiml
2. Select Add

Add IML Hardware
3. Select LabIML RS 232 ASCII Instrument Handler – User Defined
4. Select Add

- 5 -

New LabIML Instrument
5. Name – Fuel
6. # of channels - 3 channels
7. Description -Fuel Analysis.

Serial communications protocol
8. Select the proper COM Port (Default 1) and leave the defaults as

pictured below:

Settings

- 6 -

Channel Settings - Configure the channels using the following commands.
9. Chan 0 (See fig below)

i. Attributes = Read Channel
ii. Max Value = 255, Min Value = 0
iii. Prompt String = 010D\C013
iv. Reply Parse String 41 0D\I01\E02

10.Chan 1
i. Attributes = Read Channel
ii. Max Value = 255, Min Value = 0
iii. Prompt String = 0110\C01
iv. Reply Parse String 41 10\I01\E02

11.Chan 2
i. Attributes = Read Channel
ii. Max Value = 255, Min Value = 0
iii. Prompt String = 0110\C013
iv. Reply Parse String 41 10\I04\E02

12.Select OK
13.Select SAVE on the main page.

Confiml will now close.

- 7 -

I will provide some explanation on the settings above.
1. Setting - perform a request/response – background, this sets the

device to request data and respond while working in the background. It is set to
timeout if no response is received in 1 second, the idle time is the time it waits to
send out another request, the data persistence is how long the data will remain
active and returned message length is the maximum number of characters (you
may have to experiment with these settings to get the best data return rate).

2. Channels – Each channel identified will have a specific task to request
a specified piece of data from the ElmScan, in this case we need three pieces of
data. The VSS is returned in 1 BYTE in HEX and needs 1 channel. The MAF has
2 BYTES in HEX so we need 2 channels for it. The first box on the very top is the
channel number, attributes is set to read channel, the prompt string is what
Windmill sends to the device 010D is the request for VSS, 01 is the request for
data and 0D is the PID (Identifier in OBDII) for VSS. \C013 is Windmill’s
command to send character return so this whole string is to simply send a
request for the VSS. The reply parse string is what Windmill will do with the
response. 41 0D is the response from Elmscan that data was received for PID
0D, \I01 is the Windmill command to ignore the first character after is sees 41 0D
and \E02 is the command to extract the next 2 characters.

Setupiml: This is the software that allows you to configure the data channels and
build a customized file.

Creating a new data file
1. Open Setupiml
2. Select Create new setup
3. Name it FUEL, Description Fuel Analysis, hit OK

Configuring the file
4. Under Device select “Device 0”
5. Under Mode Select “Select Channels”
6. Double Click all channels on left side to grey out.
7. Under Device Select “Device 1”
8. Under Mode select “Configure Channels”

Name each Channel
9. Double Click the first value on the left column (00000) and name

it VSS – select OK
10. Double Click the first value on the left column (00001) and name

it MAFA – select OK
11. Double Click the first value on the left column (00002) and name

it MAFB – select OK

- 8 -

You will now have something like:

Under file select save and choose the file name you entered (Fuel). You have
now completed the setup of the Windmill software.

WmDDE:
The final program in windmill is Wmdde, this program uses the configuration file
you have just created to access the data on your vehicle and serve it out with
DDE.

1. Run Wmdde
2. File – Load Hardware Setup – select Fuel.IMS (or whatever you

named the file in SetupIML).
3. Select Connect All - Ok

If your Elmscan device is connected to your vehicle and PC, your vehicle key is
in the on position or running you should now see the data streaming in and may
look like 05, A3 etc. Since these are in HEX they must be converted to decimal
and then apply a specific math function that is identified under the OBDII PID
Table. At this point all we must do next is setup MS Excel to see the data from
Wmdde and convert it to MPG.

- 9 -

What you see above is the WmDDE software running with the hardware profile
we just setup. The ERROR 114 simply means there is no response, this is
because the device is not connected. When working you will see data changing
based on the Refresh rate set above (1 Sec is the default but you can set it as
low as 0.3 sec).

MS EXCEL Setup:
 Most of the work is done now, all we need to do is put together the math
functions into Excel Cells. The first thing you must do is ensure you have the
Analysis Toolpak activated. You can do this by selecting tools/Add-Ins and the
Analysis Toolpak is checked. You may need to install this at this point so make
sure you have the install disk available.

Now we must get the data stream from WmDDE into excel, to do this
follow these steps.

1. Cell1 enter”=windmill|data!VSS” (without quotes)
2. Cell2 enter”=windmill|data!MAFA” (without quotes)
3. Cell3 enter”=windmill|data!MAFB” (without quotes)

Convert the data from HEX to Decimal
4. Cell4 enter ”HEX2DEC(Cell1)” (without quotes)
5. Cell5 enter ”HEX2DEC(Cell2)” (without quotes)
6. Cell6 enter ”HEX2DEC(Cell3)” (without quotes)

Calculate MAF
7. Cell7 enter “=((256*cell5)+cell6)/100” (without quotes)

Calculate GPH
8. Cell9 enter “=cell7 * 0.0805” (without quotes)

Calculate MPG
9. Cell10 enter “=(cell1*7.718)/cell4” (without quotes)

- 10 -

This completes all calculations functions, if your system is connected, WmDDE is
running and collecting data then you should start seeing data in Excel. Below is
how I configured my Excel Sheet.

- 11 -

Appendix A
DAS SOFTWARE

The DAS software Windmill is freely available for download from their
website http://www.windmill.co.uk

OBDII to RS232 interpreter
This device is used to read the data from your OBDII (1996 and newer)

vehicle through a PC COM Port and ASCII commands. There are different
protocols for FORD (PWM), GM (VPW), and other vehicles (ISO, CAN). You will
need to determine which your vehicle uses. You can choose to build your own
device or purchase one already built.

Description Protocol Scantool.net
ElmScan 5 USB Scan Tool All 421200
ElmScan PWM Scan Tool PWM 420200
ElmScan VPW Scan Tool VPW 420300
ElmScan ISO USB ISO 420500

The following list the parts and schematics for the three common type devices.

OBDII - ELM PARTS LISTS

ELM320 Data Sheet http://www.elmelectronics.com/DSheets/ELM320DS.pdf

ELM-320 PARTS LIST
Description QTY Allied Part # Scantool.net

ELM 320 Chip 1 360101
DB25M to DB9F Cable 1 0088-1 (1ft) 141001
J1962M to DB9F Cable 1 143301
750 Ohm 1 895-0881
2.7 kOhm 2 296-6320
4.7 kOhm 5 832-1393
10 kOhm 3 832-1118
47 kOhm 1 296-2182
100 kOhm 1 832-1110
0.01 uF 1 507-0326
0.1 uF 1 881-0478
0.47 uF 1 613-0497
27 pF 2 881-5122
1N4148 3 935-0242
2N3904 (NPN) 2 431-0406
2N3906 (PNP) 3 568-0293
+5v Voltage Regulator 1 568-0965
ICSOCKET/DIP8 1 900-0004
3.579545 MHz 1 895-0675
DB9RA/M 1 720-6170
DB25RA/F 1 810-0091
LED5MM/RED 1 679-9981

- 12 -

http://www.windmill.co.uk/
http://www.elmelectronics.com/DSheets/ELM320DS.pdf
http://www.scantool.net/products/product_info.php?cPath=8_1&products_id=41
http://www.scantool.net/products/product_info.php?cPath=8_1&products_id=12
http://www.scantool.net/products/product_info.php?cPath=8_1&products_id=2

ELM320 Schematic

- 13 -

ELM322 Data Sheet http://www.elmelectronics.com/DSheets/ELM322DS.pdf

ELM-322 PARTS LIST
Description QTY Allied Part # Scantool.net

ELM 322 Chip 360201
DB25M to DB9F Cable 0088-1 (1ft) 141001
J1962M to DB9F Cable 143301
750 Ohm 1 895-0881
100 Ohm, ½ Watt 1 895-0069
4.7 kOhm 3 832-1393
10 kOhm 3 832-1118
47 kOhm 1 296-2182
100 kOhm 1 832-1110
0.01 uF 1 507-0326
0.1 uF 1 881-0478
0.47 uF 1 613-0497
27 pF 2 881-5122
1N4148 3 935-0242
2N3904 (NPN) 1 431-0406
2N3906 (PNP) 2 568-0293
+5v Voltage Regulator 1 568-0965
ICSOCKET/DIP8 1 900-0004
3.579545 MHz 1 895-0675
DB9RA/M 1 720-6170
DB25RA/F 1 810-0091
LED5MM/RED 1 679-9981

- 14 -

http://www.elmelectronics.com/DSheets/ELM322DS.pdf

ELM322 Schematic

- 15 -

ELM323 Data Sheet http://www.elmelectronics.com/DSheets/ELM323DS.pdf

ELM-323 PARTS LIST
Description QTY Allied Part # Scantool.net

ELM 323 Chip 360301
DB25M to DB9F Cable 0088-1 (1ft) 141001
J1962M to DB9F Cable 143301
750 Ohm 1 895-0881
2.2 kOhm 2 296-6318
4.7 kOhm 2 832-1393
10 kOhm 3 832-1118
47 kOhm 1 296-2182
100 kOhm 1 832-1110
510 Ohm, ½ Watt 2 823-0045
330 Ohm 2 823-0018
0.01 uF 2 507-0326
0.1 uF 2 881-0478
0.47 uF 1 613-0497
27 pF 2 881-5122
1N4148 2 935-0242
2N3904 (NPN) 2 431-0406
2N3906 (PNP) 2 568-0293
+5v Voltage Regulator 1 568-0965
ICSOCKET/DIP14 1 900-0006
3.579545 MHz 1 895-0675
DB9RA/M 1 720-6170
DB25RA/F 1 810-0091
LED5MM/RED 1 679-9981
LED5MM/GREEN 2 679-3001
LED5MM/YELLOW 2 679-7753

- 16 -

http://www.elmelectronics.com/DSheets/ELM323DS.pdf

ELM323 Schematic

- 17 -

APPENDIX B – OBD- II Testing

TESTING THE ELMSCAN UNIT

In order for you to access the data from your vehicle on your PC Laptop
you will need to two vital pieces of information. A terminal
program that can send ASCII commands to the ELMScan
and the (PID) table that lists all the signal commands needed
to request the appropriate data from the vehicle. Windows
comes with a terminal program called Hyper-Terminal that
you can use to send simple commands to the ELMScan in
ASCII format, however; the data returned is in HEX and has
several bits of information, you will need to understand this
data stream and convert to Decimal.

The Data sheet for the ELMScan Chipset explains in
detail what modes you can put the chipset in but for this
project we will focus on the “show current data” mode. This is
signified by sending “01” out. Now this is meaningless unless
you add the appropriate PID code for the specific data you
are after, in our case we are looking for the Mass Air Flow
(MAF) and Vehicle Speed Sensor (VSS). These PID’s are
“10” and “0D” respectively. Therefore, to request the vehicle
speed you would send the command 0110 through the terminal program and
would be returned:

Send 010D return:

Receive “41 0D 37” This shows a mode 1 response (41) from PID 0D and
the value is 37. The value is in HEX, to convert to Decimal multiply the first digit
by 16 and add the second digit to reveal a value of 55 kilometers per hour.

Hyper-Terminal is good for testing but in order to continuously receive
updated “real-time” values a more powerful program is needed. There are many
off the shelf programs out there that will do this for you, many are freeware and
are provided when you purchase the ELMScan device or for download form their
website. There is one problem with these programs; they do not offer real-time
Miles per Gallon monitoring (I have found one program out there but this is a
commercial version and costly). Beside, what fun is there if you buy everything
already done?
The Data Acquisition Software (DAS) I used to request the signals from the
Vehicle Electronic Control Module (ECM) through the ELMScan hardware is
named Windmill and is freely available from their website
(http://www.windmill.co.uk).

- 18 -

HEX DEC
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

http://www.windmill.co.uk

APPENDIX-C OBD-II PIDs

Mode
(hex)

PID
(hex)

Data
bytes

returned
Description Min

value Max value Units Formula

01 00 4 PIDs supported Bit encoded [A7..D0] ==
[PID 0x01..PID 0x20]

01 01 4 Number of trouble
codes and I/M info Bit encoded. See below.

01 03 2 Fuel system status Bit encoded. See below.

01 04 1 Calculated engine load
value 0 100 % A*100/255

01 05 1 Engine coolant
temperature -40 215 °C A-40

01 06 1 Short term fuel % trim
—Bank 1

-100
(lean)

99.22
(rich) % 0.7812 * (A-128)

01 07 1 Long term fuel % trim
—Bank 1

-100
(lean)

99.22
(rich) % 0.7812 * (A-128)

01 08 1 Short term fuel % trim
—Bank 2

-100
(lean)

99.22
(rich) % 0.7812 * (A-128)

01 09 1 Long term fuel % trim
—Bank 2

-100
(lean)

99.22
(rich) % 0.7812 * (A-128)

01 0A 1 Fuel pressure 0 765 kPa
(gauge) A*3

01 0B 1 Intake manifold 0 255 kPa A

- 19 -

pressure (absolute)

01 0C 2 Engine RPM 0 16,383.75 rpm ((A*256)+B)/4

01 0D 1 Vehicle speed 0 255 km/h A

01 0E 1 Timing advance -64 63.5
° relative
to #1
cylinder

A/2 - 64

01 0F 1 Intake air temperature -40 215 °C A-40

01 10 2 MAF air flow rate 0 655.35 g/s ((256*A)+B) / 100

01 11 1 Throttle position 0 100 % A*100/255

01 12 1 Sec.(?) air status Bit encoded. See below.

01 13 1 Oxygen sensors
present

[A0..A3] == Bank 1,
Sensors 1-4. [A4..A7] ==
Bank 2...

01 14 2

Bank 1, Sensor 1:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 15 2

Bank 1, Sensor 2:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

- 20 -

01 16 2

Bank 1, Sensor 3:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 17 2

Bank 1, Sensor 4:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 18 2

Bank 2, Sensor 1:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 19 2

Bank 2, Sensor 2:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 1A 2

Bank 2, Sensor 3:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 1B 2

Bank 2, Sensor 4:
Oxygen sensor
voltage,
Short term fuel trim

0
0

1.275
99.2

Volts
%

A * 0.005
(B-128) * 0.7812 (if
B==0xFF, sensor is not
used in trim calc)

01 1C 1 OBD standards this
vehicle conforms to Bit encoded. See below.

01 1D 1 Oxygen sensors
present

Similar to PID 13, but
[A0..A7] == [B1S1,
B1S2, B2S1, B2S2,
B3S1, B3S2, B4S1,
B4S2]

01 1E 1 Auxiliary input status A0 == Power Take Off
(PTO) status (1 ==

- 21 -

active)
[A1..A7] not used

01 1F 2 Run time since engine
start 0 65,535 seconds (A*256)+B

01 20 4 PIDs supported 21-40 Bit encoded [A7..D0] ==
[PID 0x21..PID 0x40]

01 21 2
Distance traveled with
malfunction indicator
lamp (MIL) on

0 65,535 km (A*256)+B

01 22 2
Fuel Rail Pressure
(relative to manifold
vacuum)

0 5177.265 kPa ((A*256)+B) * 0.079

01 23 2 Fuel Rail Pressure
(diesel) 0 655350 kPa

(gauge) ((A*256)+B) * 10

01 24 4
O2S1_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 25 4
O2S2_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 26 4
O2S3_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 27 4
O2S4_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 28 4 O2S5_WR_lambda(1):
Equivalence Ratio

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

- 22 -

Voltage

01 29 4
O2S6_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 2A 4
O2S7_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 2B 4
O2S8_WR_lambda(1):
Equivalence Ratio
Voltage

0
0

2
8

N/A
V

((A*256)+B)*0.0000305
((C*256)+D)*0.000122

01 2C 1 Commanded EGR 0 100 % 100*A/255

01 2D 1 EGR Error -100 99.22 % A*0.78125 - 100

01 2E 1 Commanded
evaporative purge 0 100 % 100*A/255

01 2F 1 Fuel Level Input 0 100 % 100*A/255

01 30 1 # of warm-ups since
codes cleared 0 255 N/A A

01 31 2 Distance traveled since
codes cleared 0 65,535 km (A*256)+B

01 32 2 Evap. System Vapor
Pressure -8,192 8,192 Pa ((A*256)+B)/4 - 8,192

01 33 1 Barometric pressure 0 255 kPa
(Absolute) A

- 23 -

01 34 4
O2S1_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 35 4
O2S2_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 36 4
O2S3_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 37 4
O2S4_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 38 4
O2S5_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 39 4
O2S6_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 3A 4
O2S7_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 3B 4
O2S8_WR_lambda(1):
Equivalence Ratio
Current

0
-128

2
128

N/A
mA

((A*256)+B)*0.0000305
((C*256)+D)*0.00391 -
128

01 3C 2 Catalyst Temperature
Bank 1, Sensor 1 -40 6,513.5 °C ((A*256)+B)/10 -40

01 3D 2 Catalyst Temperature
Bank 1, Sensor 2 -40 6,513.5 °C ((A*256)+B)/10 -40

- 24 -

01 3E 2 Catalyst Temperature
Bank 2, Sensor 1 -40 6,513.5 °C ((A*256)+B)/10 -40

01 3F 2 Catalyst Temperature
Bank 2, Sensor 2 -40 6,513.5 °C ((A*256)+B)/10 -40

01 40 4 PIDs supported 41-60
(?)

Bit encoded [A7..D0] ==
[PID 0x41..PID 0x60] (?)

01 41 ? Monitor status this
drive cycle ? ? ? ?

01 42 2 Control module voltage 0 65.535 V ((A*256)+B)/1000

01 43 2 Absolute load value 0 25696 % ((A*256)+B)*100/255

01 44 2 Command equivalence
ratio 0 2 N/A ((A*256)+B)*0.0000305

01 45 1 Relative throttle
position 0 100 % A*100/255

01 46 1 Ambient air
temperature -40 215 °C A-40

01 47 1 Absolute throttle
position B 0 100 % A*100/255

01 48 1 Absolute throttle
position C 0 100 % A*100/255

01 49 1 Accelerator pedal
position D 0 100 % A*100/255

01 4A 1 Accelerator pedal 0 100 % A*100/255

- 25 -

position E

01 4B 1 Accelerator pedal
position F 0 100 % A*100/255

01 4C 1 Commanded throttle
actuator 0 100 % A*100/255

01 4D 2 Time run with MIL on 0 65,535 minutes (A*256)+B

01 4E 2 Time since trouble
codes cleared 0 65,535 minutes (A*256)+B

01 C3 ? ? ? ? ?

Returns numerous data,
including Drive
Condition ID and Engine
Speed*

01 C4 ? ? ? ? ?

B5 is Engine Idle
Request
B6 is Engine Stop
Request*

02 02 2 Freeze frame trouble
code

BCD encoded, see
below.

03 N/A n*6 Request trouble codes
3 codes per message
frame, BCD encoded.
See below.

04 N/A 0

Clear trouble codes /
Malfunction indicator
lamp (MIL) / Check
engine light

Clears all stored trouble
codes and turns the MIL
off.

09 02 5x5 Vehicle identification
number (VIN) number

Returns 5 lines, A is line
ordering flag, B-E ASCII

- 26 -

coded VIN digits.

- 27 -

